初期構築

This commit is contained in:
ry.yamafuji 2025-11-13 22:21:35 +09:00
parent fda857bcd6
commit d5027a5e02
8 changed files with 3682 additions and 1 deletions

2
.env.sample Normal file
View File

@ -0,0 +1,2 @@
AIRFLOW_UID=50000
AIRFLOW_GID=0

2
.gitignore vendored
View File

@ -1,4 +1,6 @@
# ---> Python
logs/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

View File

@ -1,3 +1,44 @@
# job-manager-by-airflow
Apach airflow
* apache/airflow:3.1.2
* https://github.com/apache/airflow
![APP](./docs/images/app01.png)
## Apach airflowとは
データ処理やバッチ処理(ETL/ELT)などのワークフローを
管理・自動化するためのもっとも有名なプラットフォームです。
* **できること・強み**
* Airflow は 本番の大規模ETLで強い
* ワークフローをコード(Python)で記述できる(DAG)
* スケジューラで定期実行できる
* 失敗時のリトライ・アラートが強い
* Web UIが強力
* プラグインが豊富で拡張性が高い
* **前提・制限**
*Airflowは「DAGどこまで実行した」などの状態をデータベースで管理する仕組み です。そのため DBなしでは動きません。
## Develop
### Dockerで構築する
```sh
docker compose up -d
```
デフォユーザーは airflow / airflow
Airflow は公式的には Linux / macOS 前提で作られていて、
systemd とか unix系コマンド前提の部分がけっこうあります。Windowsならばwslで実行してください
#### 公式のDocker composeファイルを取得する方法
```sh
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/stable/docker-compose.yaml'
```

3225
config/airflow.cfg Normal file

File diff suppressed because it is too large Load Diff

337
docker-compose.yaml Normal file
View File

@ -0,0 +1,337 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:3.1.2
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# AIRFLOW_PROJ_DIR - Base path to which all the files will be volumed.
# Default: .
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Use this option ONLY for quick checks. Installing requirements at container
# startup is done EVERY TIME the service is started.
# A better way is to build a custom image or extend the official image
# as described in https://airflow.apache.org/docs/docker-stack/build.html.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider distributions you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:3.1.2}
# build: .
env_file:
- ${ENV_FILE_PATH:-.env}
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__CORE__AUTH_MANAGER: airflow.providers.fab.auth_manager.fab_auth_manager.FabAuthManager
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__CORE__EXECUTION_API_SERVER_URL: 'http://airflow-apiserver:8080/execution/'
# yamllint disable rule:line-length
# Use simple http server on scheduler for health checks
# See https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/check-health.html#scheduler-health-check-server
# yamllint enable rule:line-length
AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
# WARNING: Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick checks
# for other purpose (development, test and especially production usage) build/extend Airflow image.
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
# The following line can be used to set a custom config file, stored in the local config folder
AIRFLOW_CONFIG: '/opt/airflow/config/airflow.cfg'
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:16
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 10s
retries: 5
start_period: 5s
restart: always
redis:
# Redis is limited to 7.2-bookworm due to licencing change
# https://redis.io/blog/redis-adopts-dual-source-available-licensing/
image: redis:7.2-bookworm
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 10s
timeout: 30s
retries: 50
start_period: 30s
restart: always
airflow-apiserver:
<<: *airflow-common
command: api-server
ports:
- "8080:8080"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/api/v2/version"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8974/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-dag-processor:
<<: *airflow-common
command: dag-processor
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type DagProcessorJob --hostname "$${HOSTNAME}"']
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
# yamllint disable rule:line-length
test:
- "CMD-SHELL"
- 'celery --app airflow.providers.celery.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}" || celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-apiserver:
condition: service_healthy
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
export AIRFLOW_UID=$$(id -u)
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
echo
echo "Creating missing opt dirs if missing:"
echo
mkdir -v -p /opt/airflow/{logs,dags,plugins,config}
echo
echo "Airflow version:"
/entrypoint airflow version
echo
echo "Files in shared volumes:"
echo
ls -la /opt/airflow/{logs,dags,plugins,config}
echo
echo "Running airflow config list to create default config file if missing."
echo
/entrypoint airflow config list >/dev/null
echo
echo "Files in shared volumes:"
echo
ls -la /opt/airflow/{logs,dags,plugins,config}
echo
echo "Change ownership of files in /opt/airflow to ${AIRFLOW_UID}:0"
echo
chown -R "${AIRFLOW_UID}:0" /opt/airflow/
echo
echo "Change ownership of files in shared volumes to ${AIRFLOW_UID}:0"
echo
chown -v -R "${AIRFLOW_UID}:0" /opt/airflow/{logs,dags,plugins,config}
echo
echo "Files in shared volumes:"
echo
ls -la /opt/airflow/{logs,dags,plugins,config}
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_MIGRATE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
depends_on:
<<: *airflow-common-depends-on
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- "5555:5555"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:

68
docs/airflow.md Normal file
View File

@ -0,0 +1,68 @@
# Apache Airflow
データ処理やバッチ処理(ETL/ELT)などのワークフローを
管理・自動化するためのもっとも有名なプラットフォームです。
* **できること・強み**
* Airflow は 本番の大規模ETLで強い
* ワークフローをコード(Python)で記述できる(DAG)
* スケジューラで定期実行できる
* 失敗時のリトライ・アラートが強い
* Web UIが強力
* プラグインが豊富で拡張性が高い
## ワークフローを記述する
Airflowの最大特徴はDAG(有向非巡回グラフ)という構造で
処理の流れをコード化できること。
DAG(Directed Acyclic Graph)とは
“順序や依存関係を持つタスクの集合” のこと。
```python
with DAG("my_etl_job") as dag:
extract >> transform >> load
```
* Directed(有向) → 流れに向きがある(A → B → C)
* Acyclic(非巡回) → ループしてはいけない(戻ってきてはいけない)
* Graph(グラフ) → ノード(タスク)と線(依存)で表す
```mermaid
flowchart LR
source1[("データソース1<br/>MySQL")]
source2[("データソース2<br/>API")]
source3[("データソース3<br/>CSV")]
extract["Extract<br/>データ抽出"]
transform["Transform<br/>データ変換"]
load["Load<br/>データ格納"]
dwh[("データウェア<br/>ハウス")]
source1 --> extract
source2 --> extract
source3 --> extract
extract --> transform
transform --> load
load --> dwh
```
### Taskタスク
DAG内で実行される個々の処理単位。
データ処理やスクリプト実行などを担当する
---
## Develop
### 環境を準備する
## Link
* https://airflow.apache.org/docs/apache-airflow/stable/howto/variable.html
* https://zenn.dev/iwatagumi/articles/c8c61771ae49fc

BIN
docs/images/app01.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

6
requirements.txt Normal file
View File

@ -0,0 +1,6 @@
requests
python-dotenv
apache-airflow==3.1.2
pandas==2.3.2
duckdb==1.3.2
google-cloud-storage